Metamath Proof Explorer


Theorem wrdlenccats1lenm1

Description: The length of a word is the length of the word concatenated with a singleton word minus 1. (Contributed by AV, 28-Jun-2018) (Revised by AV, 5-Mar-2022)

Ref Expression
Assertion wrdlenccats1lenm1 W Word V W ++ ⟨“ S ”⟩ 1 = W

Proof

Step Hyp Ref Expression
1 ccatws1len W Word V W ++ ⟨“ S ”⟩ = W + 1
2 1 oveq1d W Word V W ++ ⟨“ S ”⟩ 1 = W + 1 - 1
3 lencl W Word V W 0
4 3 nn0cnd W Word V W
5 pncan1 W W + 1 - 1 = W
6 4 5 syl W Word V W + 1 - 1 = W
7 2 6 eqtrd W Word V W ++ ⟨“ S ”⟩ 1 = W