Database
REAL AND COMPLEX NUMBERS
Words over a set
Definitions and basic theorems
wrdlenge1n0
Next ⟩
len0nnbi
Metamath Proof Explorer
Ascii
Unicode
Theorem
wrdlenge1n0
Description:
A word with length at least 1 is not empty.
(Contributed by
AV
, 14-Oct-2018)
Ref
Expression
Assertion
wrdlenge1n0
⊢
W
∈
Word
V
→
W
≠
∅
↔
1
≤
W
Proof
Step
Hyp
Ref
Expression
1
hashneq0
⊢
W
∈
Word
V
→
0
<
W
↔
W
≠
∅
2
lencl
⊢
W
∈
Word
V
→
W
∈
ℕ
0
3
2
nn0zd
⊢
W
∈
Word
V
→
W
∈
ℤ
4
zgt0ge1
⊢
W
∈
ℤ
→
0
<
W
↔
1
≤
W
5
3
4
syl
⊢
W
∈
Word
V
→
0
<
W
↔
1
≤
W
6
1
5
bitr3d
⊢
W
∈
Word
V
→
W
≠
∅
↔
1
≤
W