Metamath Proof Explorer


Theorem wrdnfi

Description: If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018) Remove unnecessary antecedent. (Revised by JJ, 18-Nov-2022)

Ref Expression
Assertion wrdnfi V Fin w Word V | w = N Fin

Proof

Step Hyp Ref Expression
1 hashwrdn V Fin N 0 w Word V | w = N = V N
2 hashcl V Fin V 0
3 nn0expcl V 0 N 0 V N 0
4 2 3 sylan V Fin N 0 V N 0
5 1 4 eqeltrd V Fin N 0 w Word V | w = N 0
6 5 ex V Fin N 0 w Word V | w = N 0
7 lencl w Word V w 0
8 eleq1 w = N w 0 N 0
9 7 8 syl5ibcom w Word V w = N N 0
10 9 con3rr3 ¬ N 0 w Word V ¬ w = N
11 10 ralrimiv ¬ N 0 w Word V ¬ w = N
12 rabeq0 w Word V | w = N = w Word V ¬ w = N
13 11 12 sylibr ¬ N 0 w Word V | w = N =
14 13 fveq2d ¬ N 0 w Word V | w = N =
15 hash0 = 0
16 14 15 eqtrdi ¬ N 0 w Word V | w = N = 0
17 0nn0 0 0
18 16 17 eqeltrdi ¬ N 0 w Word V | w = N 0
19 6 18 pm2.61d1 V Fin w Word V | w = N 0
20 wrdexg V Fin Word V V
21 rabexg Word V V w Word V | w = N V
22 hashclb w Word V | w = N V w Word V | w = N Fin w Word V | w = N 0
23 20 21 22 3syl V Fin w Word V | w = N Fin w Word V | w = N 0
24 19 23 mpbird V Fin w Word V | w = N Fin