Metamath Proof Explorer


Theorem wrdnval

Description: Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Proof shortened by AV, 13-May-2020)

Ref Expression
Assertion wrdnval V X N 0 w Word V | w = N = V 0 ..^ N

Proof

Step Hyp Ref Expression
1 df-rab w Word V | w = N = w | w Word V w = N
2 ovexd V X N 0 0 ..^ N V
3 elmapg V X 0 ..^ N V w V 0 ..^ N w : 0 ..^ N V
4 2 3 syldan V X N 0 w V 0 ..^ N w : 0 ..^ N V
5 iswrdi w : 0 ..^ N V w Word V
6 5 adantl V X N 0 w : 0 ..^ N V w Word V
7 fnfzo0hash N 0 w : 0 ..^ N V w = N
8 7 adantll V X N 0 w : 0 ..^ N V w = N
9 6 8 jca V X N 0 w : 0 ..^ N V w Word V w = N
10 9 ex V X N 0 w : 0 ..^ N V w Word V w = N
11 wrdf w Word V w : 0 ..^ w V
12 oveq2 w = N 0 ..^ w = 0 ..^ N
13 12 feq2d w = N w : 0 ..^ w V w : 0 ..^ N V
14 11 13 syl5ibcom w Word V w = N w : 0 ..^ N V
15 14 imp w Word V w = N w : 0 ..^ N V
16 10 15 impbid1 V X N 0 w : 0 ..^ N V w Word V w = N
17 4 16 bitrd V X N 0 w V 0 ..^ N w Word V w = N
18 17 abbi2dv V X N 0 V 0 ..^ N = w | w Word V w = N
19 1 18 eqtr4id V X N 0 w Word V | w = N = V 0 ..^ N