Database
REAL AND COMPLEX NUMBERS
Words over a set
Definitions and basic theorems
wrdred1
Next ⟩
wrdred1hash
Metamath Proof Explorer
Ascii
Unicode
Theorem
wrdred1
Description:
A word truncated by a symbol is a word.
(Contributed by
AV
, 29-Jan-2021)
Ref
Expression
Assertion
wrdred1
⊢
F
∈
Word
S
→
F
↾
0
..^
F
−
1
∈
Word
S
Proof
Step
Hyp
Ref
Expression
1
wrdf
⊢
F
∈
Word
S
→
F
:
0
..^
F
⟶
S
2
lencl
⊢
F
∈
Word
S
→
F
∈
ℕ
0
3
nn0z
⊢
F
∈
ℕ
0
→
F
∈
ℤ
4
fzossrbm1
⊢
F
∈
ℤ
→
0
..^
F
−
1
⊆
0
..^
F
5
3
4
syl
⊢
F
∈
ℕ
0
→
0
..^
F
−
1
⊆
0
..^
F
6
fssres
⊢
F
:
0
..^
F
⟶
S
∧
0
..^
F
−
1
⊆
0
..^
F
→
F
↾
0
..^
F
−
1
:
0
..^
F
−
1
⟶
S
7
5
6
sylan2
⊢
F
:
0
..^
F
⟶
S
∧
F
∈
ℕ
0
→
F
↾
0
..^
F
−
1
:
0
..^
F
−
1
⟶
S
8
iswrdi
⊢
F
↾
0
..^
F
−
1
:
0
..^
F
−
1
⟶
S
→
F
↾
0
..^
F
−
1
∈
Word
S
9
7
8
syl
⊢
F
:
0
..^
F
⟶
S
∧
F
∈
ℕ
0
→
F
↾
0
..^
F
−
1
∈
Word
S
10
1
2
9
syl2anc
⊢
F
∈
Word
S
→
F
↾
0
..^
F
−
1
∈
Word
S