Metamath Proof Explorer


Theorem wrdred1hash

Description: The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 29-Jan-2021)

Ref Expression
Assertion wrdred1hash F Word S 1 F F 0 ..^ F 1 = F 1

Proof

Step Hyp Ref Expression
1 lencl F Word S F 0
2 wrdf F Word S F : 0 ..^ F S
3 ffn F : 0 ..^ F S F Fn 0 ..^ F
4 nn0z F 0 F
5 fzossrbm1 F 0 ..^ F 1 0 ..^ F
6 4 5 syl F 0 0 ..^ F 1 0 ..^ F
7 6 adantr F 0 1 F 0 ..^ F 1 0 ..^ F
8 7 adantl F Fn 0 ..^ F F 0 1 F 0 ..^ F 1 0 ..^ F
9 fnssresb F Fn 0 ..^ F F 0 ..^ F 1 Fn 0 ..^ F 1 0 ..^ F 1 0 ..^ F
10 9 adantr F Fn 0 ..^ F F 0 1 F F 0 ..^ F 1 Fn 0 ..^ F 1 0 ..^ F 1 0 ..^ F
11 8 10 mpbird F Fn 0 ..^ F F 0 1 F F 0 ..^ F 1 Fn 0 ..^ F 1
12 hashfn F 0 ..^ F 1 Fn 0 ..^ F 1 F 0 ..^ F 1 = 0 ..^ F 1
13 11 12 syl F Fn 0 ..^ F F 0 1 F F 0 ..^ F 1 = 0 ..^ F 1
14 1nn0 1 0
15 nn0sub2 1 0 F 0 1 F F 1 0
16 14 15 mp3an1 F 0 1 F F 1 0
17 hashfzo0 F 1 0 0 ..^ F 1 = F 1
18 16 17 syl F 0 1 F 0 ..^ F 1 = F 1
19 18 adantl F Fn 0 ..^ F F 0 1 F 0 ..^ F 1 = F 1
20 13 19 eqtrd F Fn 0 ..^ F F 0 1 F F 0 ..^ F 1 = F 1
21 20 ex F Fn 0 ..^ F F 0 1 F F 0 ..^ F 1 = F 1
22 2 3 21 3syl F Word S F 0 1 F F 0 ..^ F 1 = F 1
23 1 22 mpand F Word S 1 F F 0 ..^ F 1 = F 1
24 23 imp F Word S 1 F F 0 ..^ F 1 = F 1