Metamath Proof Explorer


Theorem wrdsymb0

Description: A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018) (Proof shortened by AV, 2-May-2020)

Ref Expression
Assertion wrdsymb0 W Word V I I < 0 W I W I =

Proof

Step Hyp Ref Expression
1 wrddm W Word V dom W = 0 ..^ W
2 lencl W Word V W 0
3 2 nn0zd W Word V W
4 simpr W I I
5 0zd W I 0
6 simpl W I W
7 nelfzo I 0 W I 0 ..^ W I < 0 W I
8 4 5 6 7 syl3anc W I I 0 ..^ W I < 0 W I
9 8 biimpar W I I < 0 W I I 0 ..^ W
10 df-nel I 0 ..^ W ¬ I 0 ..^ W
11 9 10 sylib W I I < 0 W I ¬ I 0 ..^ W
12 eleq2 dom W = 0 ..^ W I dom W I 0 ..^ W
13 12 notbid dom W = 0 ..^ W ¬ I dom W ¬ I 0 ..^ W
14 11 13 syl5ibr dom W = 0 ..^ W W I I < 0 W I ¬ I dom W
15 14 exp4c dom W = 0 ..^ W W I I < 0 W I ¬ I dom W
16 1 3 15 sylc W Word V I I < 0 W I ¬ I dom W
17 16 imp W Word V I I < 0 W I ¬ I dom W
18 ndmfv ¬ I dom W W I =
19 17 18 syl6 W Word V I I < 0 W I W I =