Metamath Proof Explorer


Theorem wrdumgr

Description: The property of being an undirected multigraph, expressing the edges as "words". (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v V = Vtx G
isumgr.e E = iEdg G
Assertion wrdumgr G U E Word X G UMGraph E Word x 𝒫 V | x = 2

Proof

Step Hyp Ref Expression
1 isumgr.v V = Vtx G
2 isumgr.e E = iEdg G
3 1 2 isumgrs G U G UMGraph E : dom E x 𝒫 V | x = 2
4 3 adantr G U E Word X G UMGraph E : dom E x 𝒫 V | x = 2
5 wrdf E Word X E : 0 ..^ E X
6 5 adantl G U E Word X E : 0 ..^ E X
7 6 fdmd G U E Word X dom E = 0 ..^ E
8 7 feq2d G U E Word X E : dom E x 𝒫 V | x = 2 E : 0 ..^ E x 𝒫 V | x = 2
9 iswrdi E : 0 ..^ E x 𝒫 V | x = 2 E Word x 𝒫 V | x = 2
10 wrdf E Word x 𝒫 V | x = 2 E : 0 ..^ E x 𝒫 V | x = 2
11 9 10 impbii E : 0 ..^ E x 𝒫 V | x = 2 E Word x 𝒫 V | x = 2
12 8 11 bitrdi G U E Word X E : dom E x 𝒫 V | x = 2 E Word x 𝒫 V | x = 2
13 4 12 bitrd G U E Word X G UMGraph E Word x 𝒫 V | x = 2