Metamath Proof Explorer


Theorem wrdv

Description: A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021) (Proof shortened by JJ, 18-Nov-2022)

Ref Expression
Assertion wrdv W Word V W Word V

Proof

Step Hyp Ref Expression
1 ssv V V
2 sswrd V V Word V Word V
3 1 2 ax-mp Word V Word V
4 3 sseli W Word V W Word V