Metamath Proof Explorer


Theorem wrdval

Description: Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion wrdval S V Word S = l 0 S 0 ..^ l

Proof

Step Hyp Ref Expression
1 df-word Word S = w | l 0 w : 0 ..^ l S
2 eliun w l 0 S 0 ..^ l l 0 w S 0 ..^ l
3 ovex 0 ..^ l V
4 elmapg S V 0 ..^ l V w S 0 ..^ l w : 0 ..^ l S
5 3 4 mpan2 S V w S 0 ..^ l w : 0 ..^ l S
6 5 rexbidv S V l 0 w S 0 ..^ l l 0 w : 0 ..^ l S
7 2 6 syl5bb S V w l 0 S 0 ..^ l l 0 w : 0 ..^ l S
8 7 abbi2dv S V l 0 S 0 ..^ l = w | l 0 w : 0 ..^ l S
9 1 8 eqtr4id S V Word S = l 0 S 0 ..^ l