Metamath Proof Explorer


Theorem wrecseq123

Description: General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018)

Ref Expression
Assertion wrecseq123 R = S A = B F = G wrecs R A F = wrecs S B G

Proof

Step Hyp Ref Expression
1 sseq2 A = B x A x B
2 1 3ad2ant2 R = S A = B F = G x A x B
3 predeq1 R = S Pred R A y = Pred S A y
4 predeq2 A = B Pred S A y = Pred S B y
5 3 4 sylan9eq R = S A = B Pred R A y = Pred S B y
6 5 3adant3 R = S A = B F = G Pred R A y = Pred S B y
7 6 sseq1d R = S A = B F = G Pred R A y x Pred S B y x
8 7 ralbidv R = S A = B F = G y x Pred R A y x y x Pred S B y x
9 2 8 anbi12d R = S A = B F = G x A y x Pred R A y x x B y x Pred S B y x
10 simp3 R = S A = B F = G F = G
11 5 reseq2d R = S A = B f Pred R A y = f Pred S B y
12 11 3adant3 R = S A = B F = G f Pred R A y = f Pred S B y
13 10 12 fveq12d R = S A = B F = G F f Pred R A y = G f Pred S B y
14 13 eqeq2d R = S A = B F = G f y = F f Pred R A y f y = G f Pred S B y
15 14 ralbidv R = S A = B F = G y x f y = F f Pred R A y y x f y = G f Pred S B y
16 9 15 3anbi23d R = S A = B F = G f Fn x x A y x Pred R A y x y x f y = F f Pred R A y f Fn x x B y x Pred S B y x y x f y = G f Pred S B y
17 16 exbidv R = S A = B F = G x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y x f Fn x x B y x Pred S B y x y x f y = G f Pred S B y
18 17 abbidv R = S A = B F = G f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y = f | x f Fn x x B y x Pred S B y x y x f y = G f Pred S B y
19 18 unieqd R = S A = B F = G f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y = f | x f Fn x x B y x Pred S B y x y x f y = G f Pred S B y
20 df-wrecs wrecs R A F = f | x f Fn x x A y x Pred R A y x y x f y = F f Pred R A y
21 df-wrecs wrecs S B G = f | x f Fn x x B y x Pred S B y x y x f y = G f Pred S B y
22 19 20 21 3eqtr4g R = S A = B F = G wrecs R A F = wrecs S B G