| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wspn0.v |
|
| 2 |
|
wspthsn |
|
| 3 |
|
wwlknbp1 |
|
| 4 |
1
|
eqeq1i |
|
| 5 |
|
wrdeq |
|
| 6 |
4 5
|
sylbi |
|
| 7 |
6
|
eleq2d |
|
| 8 |
|
0wrd0 |
|
| 9 |
7 8
|
bitrdi |
|
| 10 |
|
fveq2 |
|
| 11 |
|
hash0 |
|
| 12 |
10 11
|
eqtrdi |
|
| 13 |
12
|
eqeq1d |
|
| 14 |
13
|
adantl |
|
| 15 |
|
nn0p1gt0 |
|
| 16 |
15
|
gt0ne0d |
|
| 17 |
|
eqneqall |
|
| 18 |
17
|
eqcoms |
|
| 19 |
16 18
|
syl5com |
|
| 20 |
19
|
adantr |
|
| 21 |
14 20
|
sylbid |
|
| 22 |
21
|
expcom |
|
| 23 |
22
|
com23 |
|
| 24 |
9 23
|
biimtrdi |
|
| 25 |
24
|
com14 |
|
| 26 |
25
|
3imp |
|
| 27 |
3 26
|
syl |
|
| 28 |
27
|
impcom |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
|
rabeq0 |
|
| 31 |
29 30
|
sylibr |
|
| 32 |
2 31
|
eqtrid |
|