Metamath Proof Explorer


Theorem wspn0

Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018) (Revised by AV, 16-May-2021) (Proof shortened by AV, 13-Mar-2022)

Ref Expression
Hypothesis wspn0.v V=VtxG
Assertion wspn0 V=NWSPathsNG=

Proof

Step Hyp Ref Expression
1 wspn0.v V=VtxG
2 wspthsn NWSPathsNG=wNWWalksNG|ffSPathsGw
3 wwlknbp1 wNWWalksNGN0wWordVtxGw=N+1
4 1 eqeq1i V=VtxG=
5 wrdeq VtxG=WordVtxG=Word
6 4 5 sylbi V=WordVtxG=Word
7 6 eleq2d V=wWordVtxGwWord
8 0wrd0 wWordw=
9 7 8 bitrdi V=wWordVtxGw=
10 fveq2 w=w=
11 hash0 =0
12 10 11 eqtrdi w=w=0
13 12 eqeq1d w=w=N+10=N+1
14 13 adantl N0w=w=N+10=N+1
15 nn0p1gt0 N00<N+1
16 15 gt0ne0d N0N+10
17 eqneqall N+1=0N+10¬ffSPathsGw
18 17 eqcoms 0=N+1N+10¬ffSPathsGw
19 16 18 syl5com N00=N+1¬ffSPathsGw
20 19 adantr N0w=0=N+1¬ffSPathsGw
21 14 20 sylbid N0w=w=N+1¬ffSPathsGw
22 21 expcom w=N0w=N+1¬ffSPathsGw
23 22 com23 w=w=N+1N0¬ffSPathsGw
24 9 23 biimtrdi V=wWordVtxGw=N+1N0¬ffSPathsGw
25 24 com14 N0wWordVtxGw=N+1V=¬ffSPathsGw
26 25 3imp N0wWordVtxGw=N+1V=¬ffSPathsGw
27 3 26 syl wNWWalksNGV=¬ffSPathsGw
28 27 impcom V=wNWWalksNG¬ffSPathsGw
29 28 ralrimiva V=wNWWalksNG¬ffSPathsGw
30 rabeq0 wNWWalksNG|ffSPathsGw=wNWWalksNG¬ffSPathsGw
31 29 30 sylibr V=wNWWalksNG|ffSPathsGw=
32 2 31 eqtrid V=NWSPathsNG=