Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018) (Revised by AV, 16-May-2021) (Proof shortened by AV, 13-Mar-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | wspn0.v | |
|
Assertion | wspn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspn0.v | |
|
2 | wspthsn | |
|
3 | wwlknbp1 | |
|
4 | 1 | eqeq1i | |
5 | wrdeq | |
|
6 | 4 5 | sylbi | |
7 | 6 | eleq2d | |
8 | 0wrd0 | |
|
9 | 7 8 | bitrdi | |
10 | fveq2 | |
|
11 | hash0 | |
|
12 | 10 11 | eqtrdi | |
13 | 12 | eqeq1d | |
14 | 13 | adantl | |
15 | nn0p1gt0 | |
|
16 | 15 | gt0ne0d | |
17 | eqneqall | |
|
18 | 17 | eqcoms | |
19 | 16 18 | syl5com | |
20 | 19 | adantr | |
21 | 14 20 | sylbid | |
22 | 21 | expcom | |
23 | 22 | com23 | |
24 | 9 23 | biimtrdi | |
25 | 24 | com14 | |
26 | 25 | 3imp | |
27 | 3 26 | syl | |
28 | 27 | impcom | |
29 | 28 | ralrimiva | |
30 | rabeq0 | |
|
31 | 29 30 | sylibr | |
32 | 2 31 | eqtrid | |