Metamath Proof Explorer


Theorem wspthneq1eq2

Description: Two simple paths with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021)

Ref Expression
Assertion wspthneq1eq2 P A N WSPathsNOn G B P C N WSPathsNOn G D A = C B = D

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wspthnonp P A N WSPathsNOn G B N 0 G V A Vtx G B Vtx G P A N WWalksNOn G B f f A SPathsOn G B P
3 1 wspthnonp P C N WSPathsNOn G D N 0 G V C Vtx G D Vtx G P C N WWalksNOn G D h h C SPathsOn G D P
4 simp3r N 0 G V A Vtx G B Vtx G P A N WWalksNOn G B f f A SPathsOn G B P f f A SPathsOn G B P
5 simp3r N 0 G V C Vtx G D Vtx G P C N WWalksNOn G D h h C SPathsOn G D P h h C SPathsOn G D P
6 spthonpthon f A SPathsOn G B P f A PathsOn G B P
7 spthonpthon h C SPathsOn G D P h C PathsOn G D P
8 6 7 anim12i f A SPathsOn G B P h C SPathsOn G D P f A PathsOn G B P h C PathsOn G D P
9 pthontrlon f A PathsOn G B P f A TrailsOn G B P
10 pthontrlon h C PathsOn G D P h C TrailsOn G D P
11 trlsonwlkon f A TrailsOn G B P f A WalksOn G B P
12 trlsonwlkon h C TrailsOn G D P h C WalksOn G D P
13 11 12 anim12i f A TrailsOn G B P h C TrailsOn G D P f A WalksOn G B P h C WalksOn G D P
14 9 10 13 syl2an f A PathsOn G B P h C PathsOn G D P f A WalksOn G B P h C WalksOn G D P
15 wlksoneq1eq2 f A WalksOn G B P h C WalksOn G D P A = C B = D
16 8 14 15 3syl f A SPathsOn G B P h C SPathsOn G D P A = C B = D
17 16 expcom h C SPathsOn G D P f A SPathsOn G B P A = C B = D
18 17 exlimiv h h C SPathsOn G D P f A SPathsOn G B P A = C B = D
19 18 com12 f A SPathsOn G B P h h C SPathsOn G D P A = C B = D
20 19 exlimiv f f A SPathsOn G B P h h C SPathsOn G D P A = C B = D
21 20 imp f f A SPathsOn G B P h h C SPathsOn G D P A = C B = D
22 4 5 21 syl2an N 0 G V A Vtx G B Vtx G P A N WWalksNOn G B f f A SPathsOn G B P N 0 G V C Vtx G D Vtx G P C N WWalksNOn G D h h C SPathsOn G D P A = C B = D
23 2 3 22 syl2an P A N WSPathsNOn G B P C N WSPathsNOn G D A = C B = D