| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
wspthnonp |
|
| 3 |
1
|
wspthnonp |
|
| 4 |
|
simp3r |
|
| 5 |
|
simp3r |
|
| 6 |
|
spthonpthon |
|
| 7 |
|
spthonpthon |
|
| 8 |
6 7
|
anim12i |
|
| 9 |
|
pthontrlon |
|
| 10 |
|
pthontrlon |
|
| 11 |
|
trlsonwlkon |
|
| 12 |
|
trlsonwlkon |
|
| 13 |
11 12
|
anim12i |
|
| 14 |
9 10 13
|
syl2an |
|
| 15 |
|
wlksoneq1eq2 |
|
| 16 |
8 14 15
|
3syl |
|
| 17 |
16
|
expcom |
|
| 18 |
17
|
exlimiv |
|
| 19 |
18
|
com12 |
|
| 20 |
19
|
exlimiv |
|
| 21 |
20
|
imp |
|
| 22 |
4 5 21
|
syl2an |
|
| 23 |
2 3 22
|
syl2an |
|