Metamath Proof Explorer


Theorem wspthnon

Description: An element of the set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 12-May-2021) (Revised by AV, 15-Mar-2022)

Ref Expression
Assertion wspthnon W A N WSPathsNOn G B W A N WWalksNOn G B f f A SPathsOn G B W

Proof

Step Hyp Ref Expression
1 breq2 w = W f A SPathsOn G B w f A SPathsOn G B W
2 1 exbidv w = W f f A SPathsOn G B w f f A SPathsOn G B W
3 eqid Vtx G = Vtx G
4 3 iswspthsnon A N WSPathsNOn G B = w A N WWalksNOn G B | f f A SPathsOn G B w
5 2 4 elrab2 W A N WSPathsNOn G B W A N WWalksNOn G B f f A SPathsOn G B W