Metamath Proof Explorer


Theorem wspthnp

Description: Properties of a set being a simple path of a fixed length as word. (Contributed by AV, 18-May-2021)

Ref Expression
Assertion wspthnp W N WSPathsN G N 0 G V W N WWalksN G f f SPaths G W

Proof

Step Hyp Ref Expression
1 df-wspthsn WSPathsN = n 0 , g V w n WWalksN g | f f SPaths g w
2 1 elmpocl W N WSPathsN G N 0 G V
3 simpl N 0 G V W N WSPathsN G N 0 G V
4 iswspthn W N WSPathsN G W N WWalksN G f f SPaths G W
5 4 a1i N 0 G V W N WSPathsN G W N WWalksN G f f SPaths G W
6 5 biimpa N 0 G V W N WSPathsN G W N WWalksN G f f SPaths G W
7 3anass N 0 G V W N WWalksN G f f SPaths G W N 0 G V W N WWalksN G f f SPaths G W
8 3 6 7 sylanbrc N 0 G V W N WSPathsN G N 0 G V W N WWalksN G f f SPaths G W
9 2 8 mpancom W N WSPathsN G N 0 G V W N WWalksN G f f SPaths G W