Metamath Proof Explorer


Theorem wspthsn

Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion wspthsn N WSPathsN G = w N WWalksN G | f f SPaths G w

Proof

Step Hyp Ref Expression
1 oveq12 n = N g = G n WWalksN g = N WWalksN G
2 fveq2 g = G SPaths g = SPaths G
3 2 breqd g = G f SPaths g w f SPaths G w
4 3 exbidv g = G f f SPaths g w f f SPaths G w
5 4 adantl n = N g = G f f SPaths g w f f SPaths G w
6 1 5 rabeqbidv n = N g = G w n WWalksN g | f f SPaths g w = w N WWalksN G | f f SPaths G w
7 df-wspthsn WSPathsN = n 0 , g V w n WWalksN g | f f SPaths g w
8 ovex N WWalksN G V
9 8 rabex w N WWalksN G | f f SPaths G w V
10 6 7 9 ovmpoa N 0 G V N WSPathsN G = w N WWalksN G | f f SPaths G w
11 7 mpondm0 ¬ N 0 G V N WSPathsN G =
12 df-wwlksn WWalksN = n 0 , g V w WWalks g | w = n + 1
13 12 mpondm0 ¬ N 0 G V N WWalksN G =
14 13 rabeqdv ¬ N 0 G V w N WWalksN G | f f SPaths G w = w | f f SPaths G w
15 rab0 w | f f SPaths G w =
16 14 15 eqtrdi ¬ N 0 G V w N WWalksN G | f f SPaths G w =
17 11 16 eqtr4d ¬ N 0 G V N WSPathsN G = w N WWalksN G | f f SPaths G w
18 10 17 pm2.61i N WSPathsN G = w N WWalksN G | f f SPaths G w