Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
|
2 |
|
eqid |
|
3 |
2
|
wspthnonp |
|
4 |
|
wwlknon |
|
5 |
|
iswwlksn |
|
6 |
|
spthonisspth |
|
7 |
|
spthispth |
|
8 |
|
pthiswlk |
|
9 |
|
wlklenvm1 |
|
10 |
8 9
|
syl |
|
11 |
6 7 10
|
3syl |
|
12 |
|
oveq1 |
|
13 |
12
|
eqeq2d |
|
14 |
|
simpr |
|
15 |
|
nncn |
|
16 |
|
pncan1 |
|
17 |
15 16
|
syl |
|
18 |
17
|
adantr |
|
19 |
14 18
|
eqtrd |
|
20 |
|
nnne0 |
|
21 |
20
|
adantr |
|
22 |
19 21
|
eqnetrd |
|
23 |
|
spthonepeq |
|
24 |
23
|
necon3bid |
|
25 |
22 24
|
syl5ibrcom |
|
26 |
25
|
expcom |
|
27 |
26
|
com23 |
|
28 |
13 27
|
syl6bi |
|
29 |
28
|
com13 |
|
30 |
11 29
|
mpd |
|
31 |
30
|
exlimiv |
|
32 |
31
|
com12 |
|
33 |
32
|
adantl |
|
34 |
5 33
|
syl6bi |
|
35 |
34
|
adantr |
|
36 |
35
|
adantr |
|
37 |
36
|
com12 |
|
38 |
37
|
3ad2ant1 |
|
39 |
38
|
com12 |
|
40 |
4 39
|
syl5bi |
|
41 |
40
|
impd |
|
42 |
41
|
3impia |
|
43 |
3 42
|
syl |
|
44 |
43
|
exlimiv |
|
45 |
1 44
|
sylbi |
|
46 |
45
|
impcom |
|