| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2z |
|
| 2 |
|
9nn |
|
| 3 |
2
|
nnzi |
|
| 4 |
|
2re |
|
| 5 |
|
9re |
|
| 6 |
|
2lt9 |
|
| 7 |
4 5 6
|
ltleii |
|
| 8 |
|
eluz2 |
|
| 9 |
1 3 7 8
|
mpbir3an |
|
| 10 |
|
fzouzsplit |
|
| 11 |
10
|
eleq2d |
|
| 12 |
9 11
|
ax-mp |
|
| 13 |
|
elun |
|
| 14 |
12 13
|
bitri |
|
| 15 |
|
elfzo2 |
|
| 16 |
|
simp1 |
|
| 17 |
|
df-9 |
|
| 18 |
17
|
breq2i |
|
| 19 |
|
eluz2nn |
|
| 20 |
|
8nn |
|
| 21 |
19 20
|
jctir |
|
| 22 |
21
|
adantr |
|
| 23 |
|
nnleltp1 |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
biimprd |
|
| 26 |
18 25
|
biimtrid |
|
| 27 |
26
|
3impia |
|
| 28 |
16 27
|
jca |
|
| 29 |
15 28
|
sylbi |
|
| 30 |
|
nnsum4primesle9 |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
a1d |
|
| 33 |
|
4nn |
|
| 34 |
33
|
a1i |
|
| 35 |
|
oveq2 |
|
| 36 |
35
|
oveq2d |
|
| 37 |
|
breq1 |
|
| 38 |
35
|
sumeq1d |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
37 39
|
anbi12d |
|
| 41 |
36 40
|
rexeqbidv |
|
| 42 |
41
|
adantl |
|
| 43 |
|
4re |
|
| 44 |
43
|
leidi |
|
| 45 |
44
|
a1i |
|
| 46 |
|
nnsum4primeseven |
|
| 47 |
46
|
impcom |
|
| 48 |
|
r19.42v |
|
| 49 |
45 47 48
|
sylanbrc |
|
| 50 |
34 42 49
|
rspcedvd |
|
| 51 |
50
|
ex |
|
| 52 |
|
3nn |
|
| 53 |
52
|
a1i |
|
| 54 |
|
oveq2 |
|
| 55 |
54
|
oveq2d |
|
| 56 |
|
breq1 |
|
| 57 |
54
|
sumeq1d |
|
| 58 |
57
|
eqeq2d |
|
| 59 |
56 58
|
anbi12d |
|
| 60 |
55 59
|
rexeqbidv |
|
| 61 |
60
|
adantl |
|
| 62 |
|
3re |
|
| 63 |
|
3lt4 |
|
| 64 |
62 43 63
|
ltleii |
|
| 65 |
64
|
a1i |
|
| 66 |
|
6nn |
|
| 67 |
66
|
nnzi |
|
| 68 |
|
6re |
|
| 69 |
|
6lt9 |
|
| 70 |
68 5 69
|
ltleii |
|
| 71 |
|
eluzuzle |
|
| 72 |
67 70 71
|
mp2an |
|
| 73 |
72
|
anim1i |
|
| 74 |
|
nnsum4primesodd |
|
| 75 |
73 74
|
mpan9 |
|
| 76 |
|
r19.42v |
|
| 77 |
65 75 76
|
sylanbrc |
|
| 78 |
53 61 77
|
rspcedvd |
|
| 79 |
78
|
ex |
|
| 80 |
|
eluzelz |
|
| 81 |
|
zeoALTV |
|
| 82 |
80 81
|
syl |
|
| 83 |
51 79 82
|
mpjaodan |
|
| 84 |
32 83
|
jaoi |
|
| 85 |
14 84
|
sylbi |
|
| 86 |
85
|
impcom |
|
| 87 |
86
|
ralrimiva |
|