Metamath Proof Explorer


Theorem wun0

Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wun0.1 φ U WUni
Assertion wun0 φ U

Proof

Step Hyp Ref Expression
1 wun0.1 φ U WUni
2 iswun U WUni U WUni Tr U U x U x U 𝒫 x U y U x y U
3 2 ibi U WUni Tr U U x U x U 𝒫 x U y U x y U
4 3 simp2d U WUni U
5 1 4 syl φ U
6 n0 U x x U
7 5 6 sylib φ x x U
8 1 adantr φ x U U WUni
9 simpr φ x U x U
10 0ss x
11 10 a1i φ x U x
12 8 9 11 wunss φ x U U
13 7 12 exlimddv φ U