Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weak universes
wun0
Next ⟩
wunr1om
Metamath Proof Explorer
Ascii
Unicode
Theorem
wun0
Description:
A weak universe contains the empty set.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypothesis
wun0.1
⊢
φ
→
U
∈
WUni
Assertion
wun0
⊢
φ
→
∅
∈
U
Proof
Step
Hyp
Ref
Expression
1
wun0.1
⊢
φ
→
U
∈
WUni
2
iswun
⊢
U
∈
WUni
→
U
∈
WUni
↔
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
3
2
ibi
⊢
U
∈
WUni
→
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
4
3
simp2d
⊢
U
∈
WUni
→
U
≠
∅
5
1
4
syl
⊢
φ
→
U
≠
∅
6
n0
⊢
U
≠
∅
↔
∃
x
x
∈
U
7
5
6
sylib
⊢
φ
→
∃
x
x
∈
U
8
1
adantr
⊢
φ
∧
x
∈
U
→
U
∈
WUni
9
simpr
⊢
φ
∧
x
∈
U
→
x
∈
U
10
0ss
⊢
∅
⊆
x
11
10
a1i
⊢
φ
∧
x
∈
U
→
∅
⊆
x
12
8
9
11
wunss
⊢
φ
∧
x
∈
U
→
∅
∈
U
13
7
12
exlimddv
⊢
φ
→
∅
∈
U