Metamath Proof Explorer


Theorem wuncn

Description: A weak universe containing _om contains the complex number construction. This theorem is construction-dependent in the literal sense, but will also be satisfied by any other reasonable implementation of the complex numbers. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wuncn.1 φ U WUni
wuncn.2 φ ω U
Assertion wuncn φ U

Proof

Step Hyp Ref Expression
1 wuncn.1 φ U WUni
2 wuncn.2 φ ω U
3 df-c = 𝑹 × 𝑹
4 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
5 df-ni 𝑵 = ω
6 1 2 wundif φ ω U
7 5 6 eqeltrid φ 𝑵 U
8 1 7 7 wunxp φ 𝑵 × 𝑵 U
9 elpqn x 𝑸 x 𝑵 × 𝑵
10 9 ssriv 𝑸 𝑵 × 𝑵
11 10 a1i φ 𝑸 𝑵 × 𝑵
12 1 8 11 wunss φ 𝑸 U
13 1 12 wunpw φ 𝒫 𝑸 U
14 prpssnq x 𝑷 x 𝑸
15 14 pssssd x 𝑷 x 𝑸
16 velpw x 𝒫 𝑸 x 𝑸
17 15 16 sylibr x 𝑷 x 𝒫 𝑸
18 17 ssriv 𝑷 𝒫 𝑸
19 18 a1i φ 𝑷 𝒫 𝑸
20 1 13 19 wunss φ 𝑷 U
21 1 20 20 wunxp φ 𝑷 × 𝑷 U
22 1 21 wunpw φ 𝒫 𝑷 × 𝑷 U
23 enrer ~ 𝑹 Er 𝑷 × 𝑷
24 23 a1i φ ~ 𝑹 Er 𝑷 × 𝑷
25 24 qsss φ 𝑷 × 𝑷 / ~ 𝑹 𝒫 𝑷 × 𝑷
26 1 22 25 wunss φ 𝑷 × 𝑷 / ~ 𝑹 U
27 4 26 eqeltrid φ 𝑹 U
28 1 27 27 wunxp φ 𝑹 × 𝑹 U
29 3 28 eqeltrid φ U