Database
REAL AND COMPLEX NUMBERS
Construction and axiomatization of real and complex numbers
Final derivation of real and complex number postulates
wuncn
Metamath Proof Explorer
Description: A weak universe containing _om contains the complex number
construction. This theorem is construction-dependent in the literal
sense, but will also be satisfied by any other reasonable implementation
of the complex numbers. (Contributed by Mario Carneiro , 2-Jan-2017)
Ref
Expression
Hypotheses
wuncn.1
⊢ φ → U ∈ WUni
wuncn.2
⊢ φ → ω ∈ U
Assertion
wuncn
⊢ φ → ℂ ∈ U
Proof
Step
Hyp
Ref
Expression
1
wuncn.1
⊢ φ → U ∈ WUni
2
wuncn.2
⊢ φ → ω ∈ U
3
df-c
⊢ ℂ = 𝑹 × 𝑹
4
df-nr
⊢ 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
5
df-ni
⊢ 𝑵 = ω ∖ ∅
6
1 2
wundif
⊢ φ → ω ∖ ∅ ∈ U
7
5 6
eqeltrid
⊢ φ → 𝑵 ∈ U
8
1 7 7
wunxp
⊢ φ → 𝑵 × 𝑵 ∈ U
9
elpqn
⊢ x ∈ 𝑸 → x ∈ 𝑵 × 𝑵
10
9
ssriv
⊢ 𝑸 ⊆ 𝑵 × 𝑵
11
10
a1i
⊢ φ → 𝑸 ⊆ 𝑵 × 𝑵
12
1 8 11
wunss
⊢ φ → 𝑸 ∈ U
13
1 12
wunpw
⊢ φ → 𝒫 𝑸 ∈ U
14
prpssnq
⊢ x ∈ 𝑷 → x ⊂ 𝑸
15
14
pssssd
⊢ x ∈ 𝑷 → x ⊆ 𝑸
16
velpw
⊢ x ∈ 𝒫 𝑸 ↔ x ⊆ 𝑸
17
15 16
sylibr
⊢ x ∈ 𝑷 → x ∈ 𝒫 𝑸
18
17
ssriv
⊢ 𝑷 ⊆ 𝒫 𝑸
19
18
a1i
⊢ φ → 𝑷 ⊆ 𝒫 𝑸
20
1 13 19
wunss
⊢ φ → 𝑷 ∈ U
21
1 20 20
wunxp
⊢ φ → 𝑷 × 𝑷 ∈ U
22
1 21
wunpw
⊢ φ → 𝒫 𝑷 × 𝑷 ∈ U
23
enrer
⊢ ~ 𝑹 Er 𝑷 × 𝑷
24
23
a1i
⊢ φ → ~ 𝑹 Er 𝑷 × 𝑷
25
24
qsss
⊢ φ → 𝑷 × 𝑷 / ~ 𝑹 ⊆ 𝒫 𝑷 × 𝑷
26
1 22 25
wunss
⊢ φ → 𝑷 × 𝑷 / ~ 𝑹 ∈ U
27
4 26
eqeltrid
⊢ φ → 𝑹 ∈ U
28
1 27 27
wunxp
⊢ φ → 𝑹 × 𝑹 ∈ U
29
3 28
eqeltrid
⊢ φ → ℂ ∈ U