Metamath Proof Explorer


Theorem wuncnv

Description: A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 φ U WUni
wunop.2 φ A U
Assertion wuncnv φ A -1 U

Proof

Step Hyp Ref Expression
1 wun0.1 φ U WUni
2 wunop.2 φ A U
3 1 2 wunrn φ ran A U
4 1 2 wundm φ dom A U
5 1 3 4 wunxp φ ran A × dom A U
6 cnvssrndm A -1 ran A × dom A
7 6 a1i φ A -1 ran A × dom A
8 1 5 7 wunss φ A -1 U