Metamath Proof Explorer


Theorem wunco

Description: A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wun0.1 φ U WUni
wunop.2 φ A U
wunco.3 φ B U
Assertion wunco φ A B U

Proof

Step Hyp Ref Expression
1 wun0.1 φ U WUni
2 wunop.2 φ A U
3 wunco.3 φ B U
4 1 3 wundm φ dom B U
5 dmcoss dom A B dom B
6 5 a1i φ dom A B dom B
7 1 4 6 wunss φ dom A B U
8 1 2 wunrn φ ran A U
9 rncoss ran A B ran A
10 9 a1i φ ran A B ran A
11 1 8 10 wunss φ ran A B U
12 1 7 11 wunxp φ dom A B × ran A B U
13 relco Rel A B
14 relssdmrn Rel A B A B dom A B × ran A B
15 13 14 mp1i φ A B dom A B × ran A B
16 1 12 15 wunss φ A B U