Metamath Proof Explorer


Theorem wuncval

Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wuncval A V wUniCl A = u WUni | A u

Proof

Step Hyp Ref Expression
1 df-wunc wUniCl = x V u WUni | x u
2 sseq1 x = A x u A u
3 2 rabbidv x = A u WUni | x u = u WUni | A u
4 3 inteqd x = A u WUni | x u = u WUni | A u
5 elex A V A V
6 wunex A V u WUni A u
7 rabn0 u WUni | A u u WUni A u
8 6 7 sylibr A V u WUni | A u
9 intex u WUni | A u u WUni | A u V
10 8 9 sylib A V u WUni | A u V
11 1 4 5 10 fvmptd3 A V wUniCl A = u WUni | A u