Metamath Proof Explorer


Theorem wuncval2

Description: Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wuncval2.f F = rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
wuncval2.u U = ran F
Assertion wuncval2 A V wUniCl A = U

Proof

Step Hyp Ref Expression
1 wuncval2.f F = rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
2 wuncval2.u U = ran F
3 1 2 wunex2 A V U WUni A U
4 wuncss U WUni A U wUniCl A U
5 3 4 syl A V wUniCl A U
6 frfnom rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω Fn ω
7 1 fneq1i F Fn ω rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω Fn ω
8 6 7 mpbir F Fn ω
9 fniunfv F Fn ω m ω F m = ran F
10 8 9 ax-mp m ω F m = ran F
11 2 10 eqtr4i U = m ω F m
12 fveq2 m = F m = F
13 12 sseq1d m = F m wUniCl A F wUniCl A
14 fveq2 m = n F m = F n
15 14 sseq1d m = n F m wUniCl A F n wUniCl A
16 fveq2 m = suc n F m = F suc n
17 16 sseq1d m = suc n F m wUniCl A F suc n wUniCl A
18 1on 1 𝑜 On
19 unexg A V 1 𝑜 On A 1 𝑜 V
20 18 19 mpan2 A V A 1 𝑜 V
21 1 fveq1i F = rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
22 fr0g A 1 𝑜 V rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω = A 1 𝑜
23 21 22 eqtrid A 1 𝑜 V F = A 1 𝑜
24 20 23 syl A V F = A 1 𝑜
25 wuncid A V A wUniCl A
26 df1o2 1 𝑜 =
27 wunccl A V wUniCl A WUni
28 27 wun0 A V wUniCl A
29 28 snssd A V wUniCl A
30 26 29 eqsstrid A V 1 𝑜 wUniCl A
31 25 30 unssd A V A 1 𝑜 wUniCl A
32 24 31 eqsstrd A V F wUniCl A
33 simplr A V n ω F n wUniCl A n ω
34 fvex F n V
35 34 uniex F n V
36 34 35 unex F n F n V
37 prex 𝒫 u u V
38 34 mptex v F n u v V
39 38 rnex ran v F n u v V
40 37 39 unex 𝒫 u u ran v F n u v V
41 34 40 iunex u F n 𝒫 u u ran v F n u v V
42 36 41 unex F n F n u F n 𝒫 u u ran v F n u v V
43 id w = z w = z
44 unieq w = z w = z
45 43 44 uneq12d w = z w w = z z
46 pweq u = x 𝒫 u = 𝒫 x
47 unieq u = x u = x
48 46 47 preq12d u = x 𝒫 u u = 𝒫 x x
49 preq1 u = x u v = x v
50 49 mpteq2dv u = x v w u v = v w x v
51 50 rneqd u = x ran v w u v = ran v w x v
52 48 51 uneq12d u = x 𝒫 u u ran v w u v = 𝒫 x x ran v w x v
53 52 cbviunv u w 𝒫 u u ran v w u v = x w 𝒫 x x ran v w x v
54 preq2 v = y x v = x y
55 54 cbvmptv v w x v = y w x y
56 mpteq1 w = z y w x y = y z x y
57 55 56 eqtrid w = z v w x v = y z x y
58 57 rneqd w = z ran v w x v = ran y z x y
59 58 uneq2d w = z 𝒫 x x ran v w x v = 𝒫 x x ran y z x y
60 43 59 iuneq12d w = z x w 𝒫 x x ran v w x v = x z 𝒫 x x ran y z x y
61 53 60 eqtrid w = z u w 𝒫 u u ran v w u v = x z 𝒫 x x ran y z x y
62 45 61 uneq12d w = z w w u w 𝒫 u u ran v w u v = z z x z 𝒫 x x ran y z x y
63 id w = F n w = F n
64 unieq w = F n w = F n
65 63 64 uneq12d w = F n w w = F n F n
66 mpteq1 w = F n v w u v = v F n u v
67 66 rneqd w = F n ran v w u v = ran v F n u v
68 67 uneq2d w = F n 𝒫 u u ran v w u v = 𝒫 u u ran v F n u v
69 63 68 iuneq12d w = F n u w 𝒫 u u ran v w u v = u F n 𝒫 u u ran v F n u v
70 65 69 uneq12d w = F n w w u w 𝒫 u u ran v w u v = F n F n u F n 𝒫 u u ran v F n u v
71 1 62 70 frsucmpt2 n ω F n F n u F n 𝒫 u u ran v F n u v V F suc n = F n F n u F n 𝒫 u u ran v F n u v
72 33 42 71 sylancl A V n ω F n wUniCl A F suc n = F n F n u F n 𝒫 u u ran v F n u v
73 simpr A V n ω F n wUniCl A F n wUniCl A
74 27 ad3antrrr A V n ω F n wUniCl A u F n wUniCl A WUni
75 73 sselda A V n ω F n wUniCl A u F n u wUniCl A
76 74 75 wunelss A V n ω F n wUniCl A u F n u wUniCl A
77 76 ralrimiva A V n ω F n wUniCl A u F n u wUniCl A
78 unissb F n wUniCl A u F n u wUniCl A
79 77 78 sylibr A V n ω F n wUniCl A F n wUniCl A
80 73 79 unssd A V n ω F n wUniCl A F n F n wUniCl A
81 74 75 wunpw A V n ω F n wUniCl A u F n 𝒫 u wUniCl A
82 74 75 wununi A V n ω F n wUniCl A u F n u wUniCl A
83 81 82 prssd A V n ω F n wUniCl A u F n 𝒫 u u wUniCl A
84 74 adantr A V n ω F n wUniCl A u F n v F n wUniCl A WUni
85 75 adantr A V n ω F n wUniCl A u F n v F n u wUniCl A
86 simplr A V n ω F n wUniCl A u F n F n wUniCl A
87 86 sselda A V n ω F n wUniCl A u F n v F n v wUniCl A
88 84 85 87 wunpr A V n ω F n wUniCl A u F n v F n u v wUniCl A
89 88 fmpttd A V n ω F n wUniCl A u F n v F n u v : F n wUniCl A
90 89 frnd A V n ω F n wUniCl A u F n ran v F n u v wUniCl A
91 83 90 unssd A V n ω F n wUniCl A u F n 𝒫 u u ran v F n u v wUniCl A
92 91 ralrimiva A V n ω F n wUniCl A u F n 𝒫 u u ran v F n u v wUniCl A
93 iunss u F n 𝒫 u u ran v F n u v wUniCl A u F n 𝒫 u u ran v F n u v wUniCl A
94 92 93 sylibr A V n ω F n wUniCl A u F n 𝒫 u u ran v F n u v wUniCl A
95 80 94 unssd A V n ω F n wUniCl A F n F n u F n 𝒫 u u ran v F n u v wUniCl A
96 72 95 eqsstrd A V n ω F n wUniCl A F suc n wUniCl A
97 96 ex A V n ω F n wUniCl A F suc n wUniCl A
98 97 expcom n ω A V F n wUniCl A F suc n wUniCl A
99 13 15 17 32 98 finds2 m ω A V F m wUniCl A
100 99 com12 A V m ω F m wUniCl A
101 100 ralrimiv A V m ω F m wUniCl A
102 iunss m ω F m wUniCl A m ω F m wUniCl A
103 101 102 sylibr A V m ω F m wUniCl A
104 11 103 eqsstrid A V U wUniCl A
105 5 104 eqssd A V wUniCl A = U