Metamath Proof Explorer


Theorem wunex

Description: Construct a weak universe from a given set. See also wunex2 . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion wunex A V u WUni A u

Proof

Step Hyp Ref Expression
1 eqid rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω = rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
2 eqid ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω = ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
3 1 2 wunex2 A V ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω WUni A ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
4 sseq2 u = ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω A u A ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω
5 4 rspcev ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω WUni A ran rec z V z z x z 𝒫 x x ran y z x y A 1 𝑜 ω u WUni A u
6 3 5 syl A V u WUni A u