Metamath Proof Explorer


Theorem wunex3

Description: Construct a weak universe from a given set. This version of wunex has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wunex3.u U = R1 rank A + 𝑜 ω
Assertion wunex3 A V U WUni A U

Proof

Step Hyp Ref Expression
1 wunex3.u U = R1 rank A + 𝑜 ω
2 r1rankid A V A R1 rank A
3 rankon rank A On
4 omelon ω On
5 oacl rank A On ω On rank A + 𝑜 ω On
6 3 4 5 mp2an rank A + 𝑜 ω On
7 peano1 ω
8 oaord1 rank A On ω On ω rank A rank A + 𝑜 ω
9 3 4 8 mp2an ω rank A rank A + 𝑜 ω
10 7 9 mpbi rank A rank A + 𝑜 ω
11 r1ord2 rank A + 𝑜 ω On rank A rank A + 𝑜 ω R1 rank A R1 rank A + 𝑜 ω
12 6 10 11 mp2 R1 rank A R1 rank A + 𝑜 ω
13 12 1 sseqtrri R1 rank A U
14 2 13 sstrdi A V A U
15 limom Lim ω
16 4 15 pm3.2i ω On Lim ω
17 oalimcl rank A On ω On Lim ω Lim rank A + 𝑜 ω
18 3 16 17 mp2an Lim rank A + 𝑜 ω
19 r1limwun rank A + 𝑜 ω On Lim rank A + 𝑜 ω R1 rank A + 𝑜 ω WUni
20 6 18 19 mp2an R1 rank A + 𝑜 ω WUni
21 1 20 eqeltri U WUni
22 14 21 jctil A V U WUni A U