Metamath Proof Explorer


Theorem wunf

Description: A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wun0.1 φ U WUni
wunop.2 φ A U
wunop.3 φ B U
wunf.3 φ F : A B
Assertion wunf φ F U

Proof

Step Hyp Ref Expression
1 wun0.1 φ U WUni
2 wunop.2 φ A U
3 wunop.3 φ B U
4 wunf.3 φ F : A B
5 1 3 2 wunmap φ B A U
6 1 5 wunelss φ B A U
7 3 2 elmapd φ F B A F : A B
8 4 7 mpbird φ F B A
9 6 8 sseldd φ F U