Metamath Proof Explorer


Theorem wunfunc

Description: A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 13-Oct-2024)

Ref Expression
Hypotheses wunfunc.1 φ U WUni
wunfunc.2 φ C U
wunfunc.3 φ D U
Assertion wunfunc φ C Func D U

Proof

Step Hyp Ref Expression
1 wunfunc.1 φ U WUni
2 wunfunc.2 φ C U
3 wunfunc.3 φ D U
4 baseid Base = Slot Base ndx
5 4 1 3 wunstr φ Base D U
6 4 1 2 wunstr φ Base C U
7 1 5 6 wunmap φ Base D Base C U
8 homid Hom = Slot Hom ndx
9 8 1 2 wunstr φ Hom C U
10 1 9 wunrn φ ran Hom C U
11 1 10 wununi φ ran Hom C U
12 8 1 3 wunstr φ Hom D U
13 1 12 wunrn φ ran Hom D U
14 1 13 wununi φ ran Hom D U
15 1 11 14 wunxp φ ran Hom C × ran Hom D U
16 1 15 wunpw φ 𝒫 ran Hom C × ran Hom D U
17 1 6 6 wunxp φ Base C × Base C U
18 1 16 17 wunmap φ 𝒫 ran Hom C × ran Hom D Base C × Base C U
19 1 7 18 wunxp φ Base D Base C × 𝒫 ran Hom C × ran Hom D Base C × Base C U
20 relfunc Rel C Func D
21 20 a1i φ Rel C Func D
22 df-br f C Func D g f g C Func D
23 eqid Base C = Base C
24 eqid Base D = Base D
25 simpr φ f C Func D g f C Func D g
26 23 24 25 funcf1 φ f C Func D g f : Base C Base D
27 fvex Base D V
28 fvex Base C V
29 27 28 elmap f Base D Base C f : Base C Base D
30 26 29 sylibr φ f C Func D g f Base D Base C
31 mapsspw f 1 st z Hom D f 2 nd z Hom C z 𝒫 Hom C z × f 1 st z Hom D f 2 nd z
32 fvssunirn Hom C z ran Hom C
33 ovssunirn f 1 st z Hom D f 2 nd z ran Hom D
34 xpss12 Hom C z ran Hom C f 1 st z Hom D f 2 nd z ran Hom D Hom C z × f 1 st z Hom D f 2 nd z ran Hom C × ran Hom D
35 32 33 34 mp2an Hom C z × f 1 st z Hom D f 2 nd z ran Hom C × ran Hom D
36 35 sspwi 𝒫 Hom C z × f 1 st z Hom D f 2 nd z 𝒫 ran Hom C × ran Hom D
37 31 36 sstri f 1 st z Hom D f 2 nd z Hom C z 𝒫 ran Hom C × ran Hom D
38 37 rgenw z Base C × Base C f 1 st z Hom D f 2 nd z Hom C z 𝒫 ran Hom C × ran Hom D
39 ss2ixp z Base C × Base C f 1 st z Hom D f 2 nd z Hom C z 𝒫 ran Hom C × ran Hom D z Base C × Base C f 1 st z Hom D f 2 nd z Hom C z z Base C × Base C 𝒫 ran Hom C × ran Hom D
40 38 39 ax-mp z Base C × Base C f 1 st z Hom D f 2 nd z Hom C z z Base C × Base C 𝒫 ran Hom C × ran Hom D
41 28 28 xpex Base C × Base C V
42 fvex Hom C V
43 42 rnex ran Hom C V
44 43 uniex ran Hom C V
45 fvex Hom D V
46 45 rnex ran Hom D V
47 46 uniex ran Hom D V
48 44 47 xpex ran Hom C × ran Hom D V
49 48 pwex 𝒫 ran Hom C × ran Hom D V
50 41 49 ixpconst z Base C × Base C 𝒫 ran Hom C × ran Hom D = 𝒫 ran Hom C × ran Hom D Base C × Base C
51 40 50 sseqtri z Base C × Base C f 1 st z Hom D f 2 nd z Hom C z 𝒫 ran Hom C × ran Hom D Base C × Base C
52 eqid Hom C = Hom C
53 eqid Hom D = Hom D
54 23 52 53 25 funcixp φ f C Func D g g z Base C × Base C f 1 st z Hom D f 2 nd z Hom C z
55 51 54 sselid φ f C Func D g g 𝒫 ran Hom C × ran Hom D Base C × Base C
56 30 55 opelxpd φ f C Func D g f g Base D Base C × 𝒫 ran Hom C × ran Hom D Base C × Base C
57 56 ex φ f C Func D g f g Base D Base C × 𝒫 ran Hom C × ran Hom D Base C × Base C
58 22 57 syl5bir φ f g C Func D f g Base D Base C × 𝒫 ran Hom C × ran Hom D Base C × Base C
59 21 58 relssdv φ C Func D Base D Base C × 𝒫 ran Hom C × ran Hom D Base C × Base C
60 1 19 59 wunss φ C Func D U