Metamath Proof Explorer


Theorem wunndx

Description: Closure of the index extractor in an infinite weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wunndx.1 φ U WUni
wunndx.2 φ ω U
Assertion wunndx φ ndx U

Proof

Step Hyp Ref Expression
1 wunndx.1 φ U WUni
2 wunndx.2 φ ω U
3 df-ndx ndx = I
4 1 2 wuncn φ U
5 nnsscn
6 5 a1i φ
7 1 4 6 wunss φ U
8 f1oi I : 1-1 onto
9 f1of I : 1-1 onto I :
10 8 9 mp1i φ I :
11 1 7 7 10 wunf φ I U
12 3 11 eqeltrid φ ndx U