Metamath Proof Explorer


Theorem wunom

Description: A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypothesis wun0.1 φ U WUni
Assertion wunom φ ω U

Proof

Step Hyp Ref Expression
1 wun0.1 φ U WUni
2 1 adantr φ x ω U WUni
3 1 wunr1om φ R1 ω U
4 r1funlim Fun R1 Lim dom R1
5 4 simpli Fun R1
6 4 simpri Lim dom R1
7 limomss Lim dom R1 ω dom R1
8 6 7 ax-mp ω dom R1
9 funimass4 Fun R1 ω dom R1 R1 ω U x ω R1 x U
10 5 8 9 mp2an R1 ω U x ω R1 x U
11 3 10 sylib φ x ω R1 x U
12 11 r19.21bi φ x ω R1 x U
13 simpr φ x ω x ω
14 8 13 sselid φ x ω x dom R1
15 onssr1 x dom R1 x R1 x
16 14 15 syl φ x ω x R1 x
17 2 12 16 wunss φ x ω x U
18 17 ex φ x ω x U
19 18 ssrdv φ ω U