Metamath Proof Explorer


Theorem wunpr

Description: A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 φ U WUni
wununi.2 φ A U
wunpr.3 φ B U
Assertion wunpr φ A B U

Proof

Step Hyp Ref Expression
1 wununi.1 φ U WUni
2 wununi.2 φ A U
3 wunpr.3 φ B U
4 iswun U WUni U WUni Tr U U x U x U 𝒫 x U y U x y U
5 4 ibi U WUni Tr U U x U x U 𝒫 x U y U x y U
6 5 simp3d U WUni x U x U 𝒫 x U y U x y U
7 simp3 x U 𝒫 x U y U x y U y U x y U
8 7 ralimi x U x U 𝒫 x U y U x y U x U y U x y U
9 1 6 8 3syl φ x U y U x y U
10 preq1 x = A x y = A y
11 10 eleq1d x = A x y U A y U
12 preq2 y = B A y = A B
13 12 eleq1d y = B A y U A B U
14 11 13 rspc2va A U B U x U y U x y U A B U
15 2 3 9 14 syl21anc φ A B U