Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weak universes
wunpr
Next ⟩
wunun
Metamath Proof Explorer
Ascii
Unicode
Theorem
wunpr
Description:
A weak universe is closed under pairing.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
wununi.1
⊢
φ
→
U
∈
WUni
wununi.2
⊢
φ
→
A
∈
U
wunpr.3
⊢
φ
→
B
∈
U
Assertion
wunpr
⊢
φ
→
A
B
∈
U
Proof
Step
Hyp
Ref
Expression
1
wununi.1
⊢
φ
→
U
∈
WUni
2
wununi.2
⊢
φ
→
A
∈
U
3
wunpr.3
⊢
φ
→
B
∈
U
4
iswun
⊢
U
∈
WUni
→
U
∈
WUni
↔
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
5
4
ibi
⊢
U
∈
WUni
→
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
6
5
simp3d
⊢
U
∈
WUni
→
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
7
simp3
⊢
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
→
∀
y
∈
U
x
y
∈
U
8
7
ralimi
⊢
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
→
∀
x
∈
U
∀
y
∈
U
x
y
∈
U
9
1
6
8
3syl
⊢
φ
→
∀
x
∈
U
∀
y
∈
U
x
y
∈
U
10
preq1
⊢
x
=
A
→
x
y
=
A
y
11
10
eleq1d
⊢
x
=
A
→
x
y
∈
U
↔
A
y
∈
U
12
preq2
⊢
y
=
B
→
A
y
=
A
B
13
12
eleq1d
⊢
y
=
B
→
A
y
∈
U
↔
A
B
∈
U
14
11
13
rspc2va
⊢
A
∈
U
∧
B
∈
U
∧
∀
x
∈
U
∀
y
∈
U
x
y
∈
U
→
A
B
∈
U
15
2
3
9
14
syl21anc
⊢
φ
→
A
B
∈
U