Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Weak universes
wunpw
Next ⟩
wunelss
Metamath Proof Explorer
Ascii
Unicode
Theorem
wunpw
Description:
A weak universe is closed under powerset.
(Contributed by
Mario Carneiro
, 2-Jan-2017)
Ref
Expression
Hypotheses
wununi.1
⊢
φ
→
U
∈
WUni
wununi.2
⊢
φ
→
A
∈
U
Assertion
wunpw
⊢
φ
→
𝒫
A
∈
U
Proof
Step
Hyp
Ref
Expression
1
wununi.1
⊢
φ
→
U
∈
WUni
2
wununi.2
⊢
φ
→
A
∈
U
3
pweq
⊢
x
=
A
→
𝒫
x
=
𝒫
A
4
3
eleq1d
⊢
x
=
A
→
𝒫
x
∈
U
↔
𝒫
A
∈
U
5
iswun
⊢
U
∈
WUni
→
U
∈
WUni
↔
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
6
5
ibi
⊢
U
∈
WUni
→
Tr
⁡
U
∧
U
≠
∅
∧
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
7
6
simp3d
⊢
U
∈
WUni
→
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
8
simp2
⊢
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
→
𝒫
x
∈
U
9
8
ralimi
⊢
∀
x
∈
U
⋃
x
∈
U
∧
𝒫
x
∈
U
∧
∀
y
∈
U
x
y
∈
U
→
∀
x
∈
U
𝒫
x
∈
U
10
1
7
9
3syl
⊢
φ
→
∀
x
∈
U
𝒫
x
∈
U
11
4
10
2
rspcdva
⊢
φ
→
𝒫
A
∈
U