Metamath Proof Explorer


Theorem wunpw

Description: A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses wununi.1 φ U WUni
wununi.2 φ A U
Assertion wunpw φ 𝒫 A U

Proof

Step Hyp Ref Expression
1 wununi.1 φ U WUni
2 wununi.2 φ A U
3 pweq x = A 𝒫 x = 𝒫 A
4 3 eleq1d x = A 𝒫 x U 𝒫 A U
5 iswun U WUni U WUni Tr U U x U x U 𝒫 x U y U x y U
6 5 ibi U WUni Tr U U x U x U 𝒫 x U y U x y U
7 6 simp3d U WUni x U x U 𝒫 x U y U x y U
8 simp2 x U 𝒫 x U y U x y U 𝒫 x U
9 8 ralimi x U x U 𝒫 x U y U x y U x U 𝒫 x U
10 1 7 9 3syl φ x U 𝒫 x U
11 4 10 2 rspcdva φ 𝒫 A U