Metamath Proof Explorer


Theorem wunress

Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses wunress.1 φ U WUni
wunress.2 φ ω U
wunress.3 φ W U
Assertion wunress φ W 𝑠 A U

Proof

Step Hyp Ref Expression
1 wunress.1 φ U WUni
2 wunress.2 φ ω U
3 wunress.3 φ W U
4 eqid W 𝑠 A = W 𝑠 A
5 eqid Base W = Base W
6 4 5 ressval W U A V W 𝑠 A = if Base W A W W sSet Base ndx A Base W
7 3 6 sylan φ A V W 𝑠 A = if Base W A W W sSet Base ndx A Base W
8 df-base Base = Slot 1
9 1 2 wunndx φ ndx U
10 8 1 9 wunstr φ Base ndx U
11 incom A Base W = Base W A
12 8 1 3 wunstr φ Base W U
13 1 12 wunin φ Base W A U
14 11 13 eqeltrid φ A Base W U
15 1 10 14 wunop φ Base ndx A Base W U
16 1 3 15 wunsets φ W sSet Base ndx A Base W U
17 3 16 ifcld φ if Base W A W W sSet Base ndx A Base W U
18 17 adantr φ A V if Base W A W W sSet Base ndx A Base W U
19 7 18 eqeltrd φ A V W 𝑠 A U
20 19 ex φ A V W 𝑠 A U
21 1 wun0 φ U
22 reldmress Rel dom 𝑠
23 22 ovprc2 ¬ A V W 𝑠 A =
24 23 eleq1d ¬ A V W 𝑠 A U U
25 21 24 syl5ibrcom φ ¬ A V W 𝑠 A U
26 20 25 pm2.61d φ W 𝑠 A U