Metamath Proof Explorer
Description: A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
wununi.1 |
|
|
|
wununi.2 |
|
|
|
wunpr.3 |
|
|
|
wuntp.3 |
|
|
Assertion |
wuntp |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
wununi.1 |
|
2 |
|
wununi.2 |
|
3 |
|
wunpr.3 |
|
4 |
|
wuntp.3 |
|
5 |
|
tpass |
|
6 |
|
dfsn2 |
|
7 |
1 2 2
|
wunpr |
|
8 |
6 7
|
eqeltrid |
|
9 |
1 3 4
|
wunpr |
|
10 |
1 8 9
|
wunun |
|
11 |
5 10
|
eqeltrid |
|