Metamath Proof Explorer
		
		
		
		Description:  A weak universe is closed under binary union.  (Contributed by Mario
         Carneiro, 2-Jan-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | wununi.1 |  | 
					
						|  |  | wununi.2 |  | 
					
						|  |  | wunpr.3 |  | 
				
					|  | Assertion | wunun |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wununi.1 |  | 
						
							| 2 |  | wununi.2 |  | 
						
							| 3 |  | wunpr.3 |  | 
						
							| 4 |  | uniprg |  | 
						
							| 5 | 2 3 4 | syl2anc |  | 
						
							| 6 | 1 2 3 | wunpr |  | 
						
							| 7 | 1 6 | wununi |  | 
						
							| 8 | 5 7 | eqeltrrd |  |