Metamath Proof Explorer


Theorem wwlknbp

Description: Basic properties of a walk of a fixed length (in an undirected graph) as word. (Contributed by Alexander van der Vekens, 16-Jul-2018) (Revised by AV, 9-Apr-2021) (Proof shortened by AV, 20-May-2021)

Ref Expression
Hypothesis wwlkbp.v V = Vtx G
Assertion wwlknbp W N WWalksN G G V N 0 W Word V

Proof

Step Hyp Ref Expression
1 wwlkbp.v V = Vtx G
2 df-wwlksn WWalksN = n 0 , g V w WWalks g | w = n + 1
3 2 elmpocl W N WWalksN G N 0 G V
4 simpl N 0 G V W N WWalksN G N 0 G V
5 4 ancomd N 0 G V W N WWalksN G G V N 0
6 iswwlksn N 0 W N WWalksN G W WWalks G W = N + 1
7 6 adantr N 0 G V W N WWalksN G W WWalks G W = N + 1
8 1 wwlkbp W WWalks G G V W Word V
9 8 simprd W WWalks G W Word V
10 9 adantr W WWalks G W = N + 1 W Word V
11 7 10 syl6bi N 0 G V W N WWalksN G W Word V
12 11 imp N 0 G V W N WWalksN G W Word V
13 df-3an G V N 0 W Word V G V N 0 W Word V
14 5 12 13 sylanbrc N 0 G V W N WWalksN G G V N 0 W Word V
15 3 14 mpancom W N WWalksN G G V N 0 W Word V