Metamath Proof Explorer


Theorem wwlknbp1

Description: Other basic properties of a walk of a fixed length as word. (Contributed by AV, 8-Mar-2022)

Ref Expression
Assertion wwlknbp1 W N WWalksN G N 0 W Word Vtx G W = N + 1

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wwlknbp W N WWalksN G G V N 0 W Word Vtx G
3 eqid Edg G = Edg G
4 1 3 wwlknp W N WWalksN G W Word Vtx G W = N + 1 i 0 ..^ N W i W i + 1 Edg G
5 simpl N 0 W Word Vtx G W = N + 1 i 0 ..^ N W i W i + 1 Edg G N 0
6 simpr1 N 0 W Word Vtx G W = N + 1 i 0 ..^ N W i W i + 1 Edg G W Word Vtx G
7 simpr2 N 0 W Word Vtx G W = N + 1 i 0 ..^ N W i W i + 1 Edg G W = N + 1
8 5 6 7 3jca N 0 W Word Vtx G W = N + 1 i 0 ..^ N W i W i + 1 Edg G N 0 W Word Vtx G W = N + 1
9 8 ex N 0 W Word Vtx G W = N + 1 i 0 ..^ N W i W i + 1 Edg G N 0 W Word Vtx G W = N + 1
10 9 3ad2ant2 G V N 0 W Word Vtx G W Word Vtx G W = N + 1 i 0 ..^ N W i W i + 1 Edg G N 0 W Word Vtx G W = N + 1
11 2 4 10 sylc W N WWalksN G N 0 W Word Vtx G W = N + 1