Metamath Proof Explorer


Theorem wwlknllvtx

Description: If a word W represents a walk of a fixed length N , then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022)

Ref Expression
Hypothesis wwlknllvtx.v V = Vtx G
Assertion wwlknllvtx W N WWalksN G W 0 V W N V

Proof

Step Hyp Ref Expression
1 wwlknllvtx.v V = Vtx G
2 wwlknbp1 W N WWalksN G N 0 W Word Vtx G W = N + 1
3 wwlknvtx W N WWalksN G x 0 N W x Vtx G
4 0elfz N 0 0 0 N
5 fveq2 x = 0 W x = W 0
6 5 eleq1d x = 0 W x Vtx G W 0 Vtx G
7 6 adantl N 0 x = 0 W x Vtx G W 0 Vtx G
8 4 7 rspcdv N 0 x 0 N W x Vtx G W 0 Vtx G
9 nn0fz0 N 0 N 0 N
10 9 biimpi N 0 N 0 N
11 fveq2 x = N W x = W N
12 11 eleq1d x = N W x Vtx G W N Vtx G
13 12 adantl N 0 x = N W x Vtx G W N Vtx G
14 10 13 rspcdv N 0 x 0 N W x Vtx G W N Vtx G
15 8 14 jcad N 0 x 0 N W x Vtx G W 0 Vtx G W N Vtx G
16 15 3ad2ant1 N 0 W Word Vtx G W = N + 1 x 0 N W x Vtx G W 0 Vtx G W N Vtx G
17 2 3 16 sylc W N WWalksN G W 0 Vtx G W N Vtx G
18 1 eleq2i W 0 V W 0 Vtx G
19 1 eleq2i W N V W N Vtx G
20 18 19 anbi12i W 0 V W N V W 0 Vtx G W N Vtx G
21 17 20 sylibr W N WWalksN G W 0 V W N V