Metamath Proof Explorer


Theorem wwlknllvtx

Description: If a word W represents a walk of a fixed length N , then the first and the last symbol of the word is a vertex. (Contributed by AV, 14-Mar-2022)

Ref Expression
Hypothesis wwlknllvtx.v V=VtxG
Assertion wwlknllvtx WNWWalksNGW0VWNV

Proof

Step Hyp Ref Expression
1 wwlknllvtx.v V=VtxG
2 wwlknbp1 WNWWalksNGN0WWordVtxGW=N+1
3 wwlknvtx WNWWalksNGx0NWxVtxG
4 0elfz N000N
5 fveq2 x=0Wx=W0
6 5 eleq1d x=0WxVtxGW0VtxG
7 6 adantl N0x=0WxVtxGW0VtxG
8 4 7 rspcdv N0x0NWxVtxGW0VtxG
9 nn0fz0 N0N0N
10 9 biimpi N0N0N
11 fveq2 x=NWx=WN
12 11 eleq1d x=NWxVtxGWNVtxG
13 12 adantl N0x=NWxVtxGWNVtxG
14 10 13 rspcdv N0x0NWxVtxGWNVtxG
15 8 14 jcad N0x0NWxVtxGW0VtxGWNVtxG
16 15 3ad2ant1 N0WWordVtxGW=N+1x0NWxVtxGW0VtxGWNVtxG
17 2 3 16 sylc WNWWalksNGW0VtxGWNVtxG
18 1 eleq2i W0VW0VtxG
19 1 eleq2i WNVWNVtxG
20 18 19 anbi12i W0VWNVW0VtxGWNVtxG
21 17 20 sylibr WNWWalksNGW0VWNV