Metamath Proof Explorer


Theorem wwlknvtx

Description: The symbols of a word W representing a walk of a fixed length N are vertices. (Contributed by AV, 16-Mar-2022)

Ref Expression
Assertion wwlknvtx WNWWalksNGi0NWiVtxG

Proof

Step Hyp Ref Expression
1 wwlknbp1 WNWWalksNGN0WWordVtxGW=N+1
2 simp2 N0WWordVtxGW=N+1WWordVtxG
3 nn0z N0N
4 fzval3 N0N=0..^N+1
5 3 4 syl N00N=0..^N+1
6 5 3ad2ant1 N0WWordVtxGW=N+10N=0..^N+1
7 6 eleq2d N0WWordVtxGW=N+1i0Ni0..^N+1
8 7 biimpa N0WWordVtxGW=N+1i0Ni0..^N+1
9 oveq2 W=N+10..^W=0..^N+1
10 9 eleq2d W=N+1i0..^Wi0..^N+1
11 10 3ad2ant3 N0WWordVtxGW=N+1i0..^Wi0..^N+1
12 11 adantr N0WWordVtxGW=N+1i0Ni0..^Wi0..^N+1
13 8 12 mpbird N0WWordVtxGW=N+1i0Ni0..^W
14 wrdsymbcl WWordVtxGi0..^WWiVtxG
15 2 13 14 syl2an2r N0WWordVtxGW=N+1i0NWiVtxG
16 15 ralrimiva N0WWordVtxGW=N+1i0NWiVtxG
17 1 16 syl WNWWalksNGi0NWiVtxG