Metamath Proof Explorer


Theorem wwlks2onsym

Description: There is a walk of length 2 from one vertex to another vertex iff there is a walk of length 2 from the other vertex to the first vertex. (Contributed by AV, 7-Jan-2022)

Ref Expression
Hypothesis elwwlks2on.v V = Vtx G
Assertion wwlks2onsym G UMGraph A V B V C V ⟨“ ABC ”⟩ A 2 WWalksNOn G C ⟨“ CBA ”⟩ C 2 WWalksNOn G A

Proof

Step Hyp Ref Expression
1 elwwlks2on.v V = Vtx G
2 eqid Edg G = Edg G
3 1 2 umgrwwlks2on G UMGraph A V B V C V ⟨“ ABC ”⟩ A 2 WWalksNOn G C A B Edg G B C Edg G
4 3anrev A V B V C V C V B V A V
5 1 2 umgrwwlks2on G UMGraph C V B V A V ⟨“ CBA ”⟩ C 2 WWalksNOn G A C B Edg G B A Edg G
6 4 5 sylan2b G UMGraph A V B V C V ⟨“ CBA ”⟩ C 2 WWalksNOn G A C B Edg G B A Edg G
7 prcom C B = B C
8 7 eleq1i C B Edg G B C Edg G
9 prcom B A = A B
10 9 eleq1i B A Edg G A B Edg G
11 8 10 anbi12ci C B Edg G B A Edg G A B Edg G B C Edg G
12 6 11 bitr2di G UMGraph A V B V C V A B Edg G B C Edg G ⟨“ CBA ”⟩ C 2 WWalksNOn G A
13 3 12 bitrd G UMGraph A V B V C V ⟨“ ABC ”⟩ A 2 WWalksNOn G C ⟨“ CBA ”⟩ C 2 WWalksNOn G A