Metamath Proof Explorer


Theorem wwlkseq

Description: Equality of two walks (as words). (Contributed by Alexander van der Vekens, 4-Aug-2018) (Revised by AV, 16-Apr-2021)

Ref Expression
Assertion wwlkseq W WWalks G T WWalks G W = T W = T i 0 ..^ W W i = T i

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wwlkbp W WWalks G G V W Word Vtx G
3 2 simprd W WWalks G W Word Vtx G
4 1 wwlkbp T WWalks G G V T Word Vtx G
5 4 simprd T WWalks G T Word Vtx G
6 eqwrd W Word Vtx G T Word Vtx G W = T W = T i 0 ..^ W W i = T i
7 3 5 6 syl2an W WWalks G T WWalks G W = T W = T i 0 ..^ W W i = T i