Metamath Proof Explorer


Theorem wwlksnextbij0

Description: Lemma for wwlksnextbij . (Contributed by Alexander van der Vekens, 7-Aug-2018) (Revised by AV, 18-Apr-2021)

Ref Expression
Hypotheses wwlksnextbij0.v V = Vtx G
wwlksnextbij0.e E = Edg G
wwlksnextbij0.d D = w Word V | w = N + 2 w prefix N + 1 = W lastS W lastS w E
wwlksnextbij0.r R = n V | lastS W n E
wwlksnextbij0.f F = t D lastS t
Assertion wwlksnextbij0 W N WWalksN G F : D 1-1 onto R

Proof

Step Hyp Ref Expression
1 wwlksnextbij0.v V = Vtx G
2 wwlksnextbij0.e E = Edg G
3 wwlksnextbij0.d D = w Word V | w = N + 2 w prefix N + 1 = W lastS W lastS w E
4 wwlksnextbij0.r R = n V | lastS W n E
5 wwlksnextbij0.f F = t D lastS t
6 1 wwlknbp W N WWalksN G G V N 0 W Word V
7 1 2 3 4 5 wwlksnextinj N 0 F : D 1-1 R
8 7 3ad2ant2 G V N 0 W Word V F : D 1-1 R
9 6 8 syl W N WWalksN G F : D 1-1 R
10 1 2 3 4 5 wwlksnextsurj W N WWalksN G F : D onto R
11 df-f1o F : D 1-1 onto R F : D 1-1 R F : D onto R
12 9 10 11 sylanbrc W N WWalksN G F : D 1-1 onto R