Metamath Proof Explorer


Theorem wwlksnextfun

Description: Lemma for wwlksnextbij . (Contributed by Alexander van der Vekens, 7-Aug-2018) (Revised by AV, 18-Apr-2021) (Revised by AV, 27-Oct-2022)

Ref Expression
Hypotheses wwlksnextbij0.v V = Vtx G
wwlksnextbij0.e E = Edg G
wwlksnextbij0.d D = w Word V | w = N + 2 w prefix N + 1 = W lastS W lastS w E
wwlksnextbij0.r R = n V | lastS W n E
wwlksnextbij0.f F = t D lastS t
Assertion wwlksnextfun N 0 F : D R

Proof

Step Hyp Ref Expression
1 wwlksnextbij0.v V = Vtx G
2 wwlksnextbij0.e E = Edg G
3 wwlksnextbij0.d D = w Word V | w = N + 2 w prefix N + 1 = W lastS W lastS w E
4 wwlksnextbij0.r R = n V | lastS W n E
5 wwlksnextbij0.f F = t D lastS t
6 fveqeq2 w = t w = N + 2 t = N + 2
7 oveq1 w = t w prefix N + 1 = t prefix N + 1
8 7 eqeq1d w = t w prefix N + 1 = W t prefix N + 1 = W
9 fveq2 w = t lastS w = lastS t
10 9 preq2d w = t lastS W lastS w = lastS W lastS t
11 10 eleq1d w = t lastS W lastS w E lastS W lastS t E
12 6 8 11 3anbi123d w = t w = N + 2 w prefix N + 1 = W lastS W lastS w E t = N + 2 t prefix N + 1 = W lastS W lastS t E
13 12 3 elrab2 t D t Word V t = N + 2 t prefix N + 1 = W lastS W lastS t E
14 simpll t Word V N 0 t = N + 2 t Word V
15 nn0re N 0 N
16 2re 2
17 16 a1i N 0 2
18 nn0ge0 N 0 0 N
19 2pos 0 < 2
20 19 a1i N 0 0 < 2
21 15 17 18 20 addgegt0d N 0 0 < N + 2
22 21 ad2antlr t Word V N 0 t = N + 2 0 < N + 2
23 breq2 t = N + 2 0 < t 0 < N + 2
24 23 adantl t Word V N 0 t = N + 2 0 < t 0 < N + 2
25 22 24 mpbird t Word V N 0 t = N + 2 0 < t
26 hashgt0n0 t Word V 0 < t t
27 14 25 26 syl2anc t Word V N 0 t = N + 2 t
28 14 27 jca t Word V N 0 t = N + 2 t Word V t
29 28 expcom t = N + 2 t Word V N 0 t Word V t
30 29 3ad2ant1 t = N + 2 t prefix N + 1 = W lastS W lastS t E t Word V N 0 t Word V t
31 30 expd t = N + 2 t prefix N + 1 = W lastS W lastS t E t Word V N 0 t Word V t
32 31 impcom t Word V t = N + 2 t prefix N + 1 = W lastS W lastS t E N 0 t Word V t
33 32 impcom N 0 t Word V t = N + 2 t prefix N + 1 = W lastS W lastS t E t Word V t
34 lswcl t Word V t lastS t V
35 33 34 syl N 0 t Word V t = N + 2 t prefix N + 1 = W lastS W lastS t E lastS t V
36 simprr3 N 0 t Word V t = N + 2 t prefix N + 1 = W lastS W lastS t E lastS W lastS t E
37 35 36 jca N 0 t Word V t = N + 2 t prefix N + 1 = W lastS W lastS t E lastS t V lastS W lastS t E
38 13 37 sylan2b N 0 t D lastS t V lastS W lastS t E
39 preq2 n = lastS t lastS W n = lastS W lastS t
40 39 eleq1d n = lastS t lastS W n E lastS W lastS t E
41 40 4 elrab2 lastS t R lastS t V lastS W lastS t E
42 38 41 sylibr N 0 t D lastS t R
43 42 5 fmptd N 0 F : D R