Metamath Proof Explorer


Theorem wwlksnexthasheq

Description: The number of the extensions of a walk (as word) by an edge equals the number of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 23-Aug-2018) (Revised by AV, 19-Apr-2021) (Revised by AV, 27-Oct-2022)

Ref Expression
Hypotheses wwlksnexthasheq.v V = Vtx G
wwlksnexthasheq.e E = Edg G
Assertion wwlksnexthasheq W N WWalksN G w N + 1 WWalksN G | w prefix N + 1 = W lastS W lastS w E = n V | lastS W n E

Proof

Step Hyp Ref Expression
1 wwlksnexthasheq.v V = Vtx G
2 wwlksnexthasheq.e E = Edg G
3 ovex N + 1 WWalksN G V
4 3 rabex w N + 1 WWalksN G | w prefix N + 1 = W lastS W lastS w E V
5 1 2 wwlksnextbij W N WWalksN G f f : w N + 1 WWalksN G | w prefix N + 1 = W lastS W lastS w E 1-1 onto n V | lastS W n E
6 hasheqf1oi w N + 1 WWalksN G | w prefix N + 1 = W lastS W lastS w E V f f : w N + 1 WWalksN G | w prefix N + 1 = W lastS W lastS w E 1-1 onto n V | lastS W n E w N + 1 WWalksN G | w prefix N + 1 = W lastS W lastS w E = n V | lastS W n E
7 4 5 6 mpsyl W N WWalksN G w N + 1 WWalksN G | w prefix N + 1 = W lastS W lastS w E = n V | lastS W n E