Metamath Proof Explorer


Theorem wwlksnextproplem1

Description: Lemma 1 for wwlksnextprop . (Contributed by Alexander van der Vekens, 31-Jul-2018) (Revised by AV, 20-Apr-2021) (Revised by AV, 29-Oct-2022)

Ref Expression
Hypothesis wwlksnextprop.x X = N + 1 WWalksN G
Assertion wwlksnextproplem1 W X N 0 W prefix N + 1 0 = W 0

Proof

Step Hyp Ref Expression
1 wwlksnextprop.x X = N + 1 WWalksN G
2 wwlknbp1 W N + 1 WWalksN G N + 1 0 W Word Vtx G W = N + 1 + 1
3 simpl2 N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 W Word Vtx G
4 peano2nn0 N + 1 0 N + 1 + 1 0
5 4 3ad2ant1 N + 1 0 W Word Vtx G W = N + 1 + 1 N + 1 + 1 0
6 eleq1 W = N + 1 + 1 W 0 N + 1 + 1 0
7 6 3ad2ant3 N + 1 0 W Word Vtx G W = N + 1 + 1 W 0 N + 1 + 1 0
8 5 7 mpbird N + 1 0 W Word Vtx G W = N + 1 + 1 W 0
9 8 adantr N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 W 0
10 simpr N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 N 0
11 nn0re N + 1 0 N + 1
12 11 lep1d N + 1 0 N + 1 N + 1 + 1
13 12 3ad2ant1 N + 1 0 W Word Vtx G W = N + 1 + 1 N + 1 N + 1 + 1
14 breq2 W = N + 1 + 1 N + 1 W N + 1 N + 1 + 1
15 14 3ad2ant3 N + 1 0 W Word Vtx G W = N + 1 + 1 N + 1 W N + 1 N + 1 + 1
16 13 15 mpbird N + 1 0 W Word Vtx G W = N + 1 + 1 N + 1 W
17 16 adantr N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 N + 1 W
18 nn0p1elfzo N 0 W 0 N + 1 W N 0 ..^ W
19 10 9 17 18 syl3anc N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 N 0 ..^ W
20 fz0add1fz1 W 0 N 0 ..^ W N + 1 1 W
21 9 19 20 syl2anc N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 N + 1 1 W
22 3 21 jca N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 W Word Vtx G N + 1 1 W
23 22 ex N + 1 0 W Word Vtx G W = N + 1 + 1 N 0 W Word Vtx G N + 1 1 W
24 2 23 syl W N + 1 WWalksN G N 0 W Word Vtx G N + 1 1 W
25 24 1 eleq2s W X N 0 W Word Vtx G N + 1 1 W
26 25 imp W X N 0 W Word Vtx G N + 1 1 W
27 pfxfv0 W Word Vtx G N + 1 1 W W prefix N + 1 0 = W 0
28 26 27 syl W X N 0 W prefix N + 1 0 = W 0