Step |
Hyp |
Ref |
Expression |
1 |
|
wwlksnextprop.x |
|
2 |
|
wwlksnextprop.e |
|
3 |
|
wwlksnextprop.y |
|
4 |
|
peano2nn0 |
|
5 |
|
iswwlksn |
|
6 |
4 5
|
syl |
|
7 |
|
eqid |
|
8 |
7
|
wwlkbp |
|
9 |
|
lencl |
|
10 |
|
eqcom |
|
11 |
|
nn0cn |
|
12 |
11
|
adantr |
|
13 |
|
1cnd |
|
14 |
|
nn0cn |
|
15 |
4 14
|
syl |
|
16 |
15
|
adantl |
|
17 |
|
subadd2 |
|
18 |
17
|
bicomd |
|
19 |
12 13 16 18
|
syl3anc |
|
20 |
10 19
|
syl5bb |
|
21 |
|
eqcom |
|
22 |
21
|
biimpi |
|
23 |
20 22
|
syl6bi |
|
24 |
23
|
ex |
|
25 |
24
|
com23 |
|
26 |
9 25
|
syl |
|
27 |
8 26
|
simpl2im |
|
28 |
27
|
imp31 |
|
29 |
28
|
oveq2d |
|
30 |
|
simpll |
|
31 |
|
nn0ge0 |
|
32 |
|
2re |
|
33 |
32
|
a1i |
|
34 |
|
nn0re |
|
35 |
33 34
|
addge02d |
|
36 |
31 35
|
mpbid |
|
37 |
|
nn0cn |
|
38 |
|
1cnd |
|
39 |
37 38 38
|
addassd |
|
40 |
|
1p1e2 |
|
41 |
40
|
a1i |
|
42 |
41
|
oveq2d |
|
43 |
39 42
|
eqtrd |
|
44 |
36 43
|
breqtrrd |
|
45 |
44
|
adantl |
|
46 |
|
breq2 |
|
47 |
46
|
ad2antlr |
|
48 |
45 47
|
mpbird |
|
49 |
|
wwlksm1edg |
|
50 |
30 48 49
|
syl2anc |
|
51 |
29 50
|
eqeltrd |
|
52 |
51
|
expcom |
|
53 |
6 52
|
sylbid |
|
54 |
53
|
com12 |
|
55 |
54
|
adantr |
|
56 |
55
|
imp |
|
57 |
7 2
|
wwlknp |
|
58 |
|
simpll |
|
59 |
|
peano2nn0 |
|
60 |
4 59
|
syl |
|
61 |
|
peano2re |
|
62 |
34 61
|
syl |
|
63 |
62
|
lep1d |
|
64 |
|
elfz2nn0 |
|
65 |
4 60 63 64
|
syl3anbrc |
|
66 |
65
|
adantl |
|
67 |
|
oveq2 |
|
68 |
67
|
adantr |
|
69 |
66 68
|
eleqtrrd |
|
70 |
69
|
adantll |
|
71 |
58 70
|
jca |
|
72 |
71
|
ex |
|
73 |
72
|
3adant3 |
|
74 |
57 73
|
syl |
|
75 |
74
|
adantr |
|
76 |
75
|
imp |
|
77 |
|
pfxlen |
|
78 |
76 77
|
syl |
|
79 |
56 78
|
jca |
|
80 |
|
iswwlksn |
|
81 |
80
|
adantl |
|
82 |
79 81
|
mpbird |
|
83 |
82
|
exp31 |
|
84 |
83 1
|
eleq2s |
|
85 |
84
|
3imp |
|
86 |
1
|
wwlksnextproplem1 |
|
87 |
86
|
3adant2 |
|
88 |
|
simp2 |
|
89 |
87 88
|
eqtrd |
|
90 |
|
fveq1 |
|
91 |
90
|
eqeq1d |
|
92 |
91 3
|
elrab2 |
|
93 |
85 89 92
|
sylanbrc |
|