Metamath Proof Explorer


Theorem wwlksnndef

Description: Conditions for WWalksN not being defined. (Contributed by Alexander van der Vekens, 30-Jul-2018) (Revised by AV, 19-Apr-2021)

Ref Expression
Assertion wwlksnndef G V N 0 N WWalksN G =

Proof

Step Hyp Ref Expression
1 neq0 ¬ N WWalksN G = w w N WWalksN G
2 eqid Vtx G = Vtx G
3 2 wwlknbp w N WWalksN G G V N 0 w Word Vtx G
4 nnel ¬ G V G V
5 nnel ¬ N 0 N 0
6 4 5 anbi12i ¬ G V ¬ N 0 G V N 0
7 6 biimpri G V N 0 ¬ G V ¬ N 0
8 7 3adant3 G V N 0 w Word Vtx G ¬ G V ¬ N 0
9 ioran ¬ G V N 0 ¬ G V ¬ N 0
10 8 9 sylibr G V N 0 w Word Vtx G ¬ G V N 0
11 3 10 syl w N WWalksN G ¬ G V N 0
12 11 exlimiv w w N WWalksN G ¬ G V N 0
13 1 12 sylbi ¬ N WWalksN G = ¬ G V N 0
14 13 con4i G V N 0 N WWalksN G =