Metamath Proof Explorer


Theorem wwlksnonfi

Description: In a finite graph, the set of walks of a fixed length between two vertices is finite. (Contributed by Alexander van der Vekens, 4-Mar-2018) (Revised by AV, 15-May-2021) (Proof shortened by AV, 15-Mar-2022)

Ref Expression
Assertion wwlksnonfi Vtx G Fin A N WWalksNOn G B Fin

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 iswwlksnon A N WWalksNOn G B = w N WWalksN G | w 0 = A w N = B
3 wwlksnfi Vtx G Fin N WWalksN G Fin
4 rabfi N WWalksN G Fin w N WWalksN G | w 0 = A w N = B Fin
5 3 4 syl Vtx G Fin w N WWalksN G | w 0 = A w N = B Fin
6 2 5 eqeltrid Vtx G Fin A N WWalksNOn G B Fin