Metamath Proof Explorer


Theorem wwlksnprcl

Description: Derivation of the length of a word W whose concatenation with a singleton word represents a walk of a fixed length N (a partial reverse closure theorem). (Contributed by AV, 4-Mar-2022)

Ref Expression
Assertion wwlksnprcl W Word V N 0 W ++ ⟨“ X ”⟩ N WWalksN G W = N

Proof

Step Hyp Ref Expression
1 iswwlksn N 0 W ++ ⟨“ X ”⟩ N WWalksN G W ++ ⟨“ X ”⟩ WWalks G W ++ ⟨“ X ”⟩ = N + 1
2 1 adantl W Word V N 0 W ++ ⟨“ X ”⟩ N WWalksN G W ++ ⟨“ X ”⟩ WWalks G W ++ ⟨“ X ”⟩ = N + 1
3 ccatws1lenp1b W Word V N 0 W ++ ⟨“ X ”⟩ = N + 1 W = N
4 3 biimpd W Word V N 0 W ++ ⟨“ X ”⟩ = N + 1 W = N
5 4 adantld W Word V N 0 W ++ ⟨“ X ”⟩ WWalks G W ++ ⟨“ X ”⟩ = N + 1 W = N
6 2 5 sylbid W Word V N 0 W ++ ⟨“ X ”⟩ N WWalksN G W = N