| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wwlksnredwwlkn.e |
|
| 2 |
|
eqidd |
|
| 3 |
|
eqid |
|
| 4 |
3 1
|
wwlknp |
|
| 5 |
|
simprl |
|
| 6 |
|
peano2nn0 |
|
| 7 |
|
peano2nn0 |
|
| 8 |
6 7
|
syl |
|
| 9 |
|
id |
|
| 10 |
|
nn0p1nn |
|
| 11 |
6 10
|
syl |
|
| 12 |
|
nn0re |
|
| 13 |
|
id |
|
| 14 |
|
peano2re |
|
| 15 |
|
peano2re |
|
| 16 |
14 15
|
syl |
|
| 17 |
13 14 16
|
3jca |
|
| 18 |
12 17
|
syl |
|
| 19 |
12
|
ltp1d |
|
| 20 |
|
nn0re |
|
| 21 |
6 20
|
syl |
|
| 22 |
21
|
ltp1d |
|
| 23 |
|
lttr |
|
| 24 |
23
|
imp |
|
| 25 |
18 19 22 24
|
syl12anc |
|
| 26 |
|
elfzo0 |
|
| 27 |
9 11 25 26
|
syl3anbrc |
|
| 28 |
|
fz0add1fz1 |
|
| 29 |
8 27 28
|
syl2anc |
|
| 30 |
29
|
adantr |
|
| 31 |
|
oveq2 |
|
| 32 |
31
|
eleq2d |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
adantl |
|
| 35 |
30 34
|
mpbird |
|
| 36 |
5 35
|
jca |
|
| 37 |
36
|
3adantr3 |
|
| 38 |
|
pfxfvlsw |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
lsw |
|
| 41 |
40
|
3ad2ant1 |
|
| 42 |
41
|
adantl |
|
| 43 |
39 42
|
preq12d |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
3ad2ant2 |
|
| 46 |
45
|
adantl |
|
| 47 |
46
|
fveq2d |
|
| 48 |
47
|
preq2d |
|
| 49 |
|
nn0cn |
|
| 50 |
|
1cnd |
|
| 51 |
49 50
|
pncand |
|
| 52 |
51
|
fveq2d |
|
| 53 |
6
|
nn0cnd |
|
| 54 |
53 50
|
pncand |
|
| 55 |
54
|
fveq2d |
|
| 56 |
52 55
|
preq12d |
|
| 57 |
56
|
adantr |
|
| 58 |
48 57
|
eqtrd |
|
| 59 |
|
fveq2 |
|
| 60 |
|
fvoveq1 |
|
| 61 |
59 60
|
preq12d |
|
| 62 |
61
|
eleq1d |
|
| 63 |
62
|
rspcv |
|
| 64 |
|
fzonn0p1 |
|
| 65 |
63 64
|
syl11 |
|
| 66 |
65
|
3ad2ant3 |
|
| 67 |
66
|
impcom |
|
| 68 |
58 67
|
eqeltrd |
|
| 69 |
43 68
|
eqeltrd |
|
| 70 |
4 69
|
sylan2 |
|
| 71 |
|
wwlksnred |
|
| 72 |
71
|
imp |
|
| 73 |
|
eqeq2 |
|
| 74 |
|
fveq2 |
|
| 75 |
74
|
preq1d |
|
| 76 |
75
|
eleq1d |
|
| 77 |
73 76
|
anbi12d |
|
| 78 |
77
|
adantl |
|
| 79 |
72 78
|
rspcedv |
|
| 80 |
2 70 79
|
mp2and |
|
| 81 |
80
|
ex |
|